The 4R’s Framework of Nutritional Strategies for Post-Exercise Recovery: A Review with Emphasis on New Generation of Carbohydrates (2024)

1. Leveille C.F., Mikhaeil J.S., Turner K.D., Silvera S., Wilkinson J., Fajardo V.A. Mitochondrial cristae density: A dynamic entity that is critical for energy production and metabolic power in skeletal muscle. J. Physiol. 2017;595:2779–2780. doi:10.1113/JP274158. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

2. Nielsen J., Gejl K.D., Hey-Mogensen M., Holmberg H.-C., Suetta C., Krustrup P., Elemans C.P.H., Ørtenblad N. Plasticity in mitochondrial cristae density allows metabolic capacity modulation in human skeletal muscle. J. Physiol. 2017;595:2839–2847. doi:10.1113/JP273040. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Hughes D.C., Ellefsen S., Baar K. Adaptations to Endurance and Strength Training. Cold Spring Harb. Perspect. Med. 2018:8. doi:10.1101/cshperspect.a029769. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

4. Lambert M.I. Training, Adaptations. In: Mooren F.C., editor. Encyclopedia of Exercise Medicine in Health and Disease. Springer; Berlin/Heidelberg, Germany: 2012. pp. 854–856. [Google Scholar]

5. Sundberg C.W., Fitts R.H. Bioenergetic basis of skeletal muscle fatigue. Curr. Opin. Physiol. 2019;10:118–127. doi:10.1016/j.cophys.2019.05.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Hunter S.K. Performance Fatigability: Mechanisms and Task Specificity. Cold Spring Harb. Perspect. Med. 2018;8 doi:10.1101/cshperspect.a029728. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. Sundberg C.W., Hunter S.K., Trappe S.W., Smith C.S., Fitts R.H. Effects of elevated H+ and Pi on the contractile mechanics of skeletal muscle fibres from young and old men: Implications for muscle fatigue in humans. J. Physiol. 2018;596:3993–4015. doi:10.1113/JP276018. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Sterling P. Allostasis: A model of predictive regulation. Physiol. Behav. 2012;106:5–15. doi:10.1016/j.physbeh.2011.06.004. [PubMed] [CrossRef] [Google Scholar]

9. Burke L. Nutricion en el Deporte/Nutrition in Sport: Un Enfoque Práctico/a Practical Approach. Editorial Médica Panamericana S.A.; Madrid, Spain: 2010. [Google Scholar]

10. Zoorob R., Parrish M.-E.E., O’Hara H., Kalliny M. Sports Nutrition Needs. Prim. Care. 2013;40:475–486. doi:10.1016/j.pop.2013.02.013. [PubMed] [CrossRef] [Google Scholar]

11. Ivy J.L., Ferguson-Stegall L.M. Nutrient Timing. Am. J. Lifestyle Med. 2013;8:246–259. doi:10.1177/1559827613502444. [CrossRef] [Google Scholar]

12. Edes A.N., Crews D.E. Allostatic load and biological anthropology. Am. J. Phys. Anthropol. 2017;162:44–70. doi:10.1002/ajpa.23146. [PubMed] [CrossRef] [Google Scholar]

13. Egan B., Zierath J.R. Exercise Metabolism and the Molecular Regulation of Skeletal Muscle Adaptation. Cell Metab. 2013;17:162–184. doi:10.1016/j.cmet.2012.12.012. [PubMed] [CrossRef] [Google Scholar]

14. Robinson M.M., Dasari S., Konopka A.R., Johnson M.L., Manjunatha S., Esponda R.R., Carter R.E., Lanza I.R., Nair K.S. Enhanced Protein Translation Underlies Improved Metabolic and Physical Adaptations to Different Exercise Training Modes in Young and Old Humans. Cell Metab. 2017;25:581–592. doi:10.1016/j.cmet.2017.02.009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Karagounis L.G., Hawley J.A. Genetic and Molecular Aspects of Sport Performance. John Wiley & Sons Ltd.; Chichester, UK: 2010. Genes, Exercise, and Glucose and Insulin Metabolism; pp. 240–248. [CrossRef] [Google Scholar]

16. Hood D.A. Invited Review: Contractile activity-induced mitochondrial biogenesis in skeletal muscle. J. Appl. Physiol. 2001;90:1137–1157. doi:10.1152/jappl.2001.90.3.1137. [PubMed] [CrossRef] [Google Scholar]

17. Jeukendrup A.E. Periodized Nutrition for Athletes. Sports Med. 2017;47:51–63. doi:10.1007/s40279-017-0694-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Thomas D.T., Erdman K.A., Burke L.M. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. J. Acad. Nutr. Diet. 2016;116:501–528. doi:10.1016/j.jand.2015.12.006. [PubMed] [CrossRef] [Google Scholar]

19. Kreider R.B. Essentials of Exercise & Sport Nutrition: Science to Practice. Lulu Press, Inc.; Morrisville, CA, USA: 2019. [Google Scholar]

20. American College of Sports Medicine. Sawka M.N., Burke L.M., Eichner E.R., Maughan R.J., Montain S.J., Stachenfeld N.S. Exercise and Fluid Replacement. Med. Sci. Sports Exerc. 2007;39:377–390. doi:10.1249/mss.0b013e31802ca597. [PubMed] [CrossRef] [Google Scholar]

21. Kreider R.B. Physiological Considerations of Ultraendurance Performance. Int. J. Sport Nutr. 1991;1:3–27. doi:10.1123/ijsn.1.1.3. [PubMed] [CrossRef] [Google Scholar]

22. McCubbin A.J., Allanson B.A., Caldwell Odgers J.N., Cort M.M., Costa R.J.S., Cox G.R., Crawshay S.T., Desbrow B., Freney E.G., Gaskell S.K., et al. Sports Dietitians Australia Position Statement: Nutrition for Exercise in Hot Environments. Int. J. Sport Nutr. Exerc. Metab. 2020;30:83–98. doi:10.1123/ijsnem.2019-0300. [PubMed] [CrossRef] [Google Scholar]

23. Roberts W.O., O'Connor F.G., Kenney W.L., Cooper L., Cheuvront S.N., Casa D.J., Armstrong L.E., Anderson S.A., McDermott B.P. National Athletic Trainers' Association Position Statement: Fluid Replacement for the Physically Active. J. Athl. Train. 2017;52:877–895. doi:10.4085/1062-6050-52.9.02. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Merson S.J., Maughan R.J., Shirreffs S.M. Rehydration with drinks differing in sodium concentration and recovery from moderate exercise-induced hypohydration in man. Eur. J. Appl. Physiol. 2008;103:585–594. doi:10.1007/s00421-008-0748-0. [PubMed] [CrossRef] [Google Scholar]

25. Kavouras S.A., Armstrong L.E., Maresh C.M., Casa D.J., Herrera-Soto J.A., Scheett T.P., Stoppani J., Mack G.W., Kraemer W. Rehydration with glycerol: endocrine, cardiovascular, and thermoregulatory responses during exercise in the heat. J. Appl. Physiol. 2005;100:442–450. doi:10.1152/japplphysiol.00187.2005. [PubMed] [CrossRef] [Google Scholar]

26. Van Rosendal S.P., Coombes J.S. Acute Topics in Sport Nutrition. Karger AG; Basel, Switzerland: 2012. Glycerol Use in Hyperhydration and Rehydration: Scientific Update; pp. 104–112. [PubMed] [CrossRef] [Google Scholar]

27. Perez-Idarraga A., Aragon-Vargas L.F. Postexercise rehydration: Potassium-rich drinks versus water and a sports drink. Appl. Physiol. Nutr. Metab. = Physiol. Appl. Nutr. Metab. 2014;39:1167–1174. doi:10.1139/apnm-2013-0434. [PubMed] [CrossRef] [Google Scholar]

28. Aragón-Vargas L.F., Pérez Idárraga A. Rehidratación posejercicio: La forma de distribuir la ingesta de un volumen constante de líquido no altera su conservación. Pensar En Mov. Rev. Cienc. Ejerc. Salud. 2011;9:12–21. doi:10.15517/pensarmov.v9i1.388. [CrossRef] [Google Scholar]

29. Aragón-Vargas L.F., Pérez-Idárraga A. Post-Exercise Rehydration: No Change in Diuresis from Water Ingested at Different Temperatures. Med. Sport. 2010;14:77–82. doi:10.2478/v10036-010-0015-4. [CrossRef] [Google Scholar]

30. Sandick B.L., Engell D.B., Maller O. Perception of drinking water temperature and effects for humans after exercise. Physiol. Behav. 1984;32:851–855. doi:10.1016/0031-9384(84)90205-1. [PubMed] [CrossRef] [Google Scholar]

31. Karp J.R., Johnston J.D., Tecklenburg S., Mickleborough T.D., Fly A.D., Stager J.M. Chocolate milk as a post-exercise recovery aid. Int. J. Sport Nutr. Exerc. Metab. 2006;16:78–91. doi:10.1123/ijsnem.16.1.78. [PubMed] [CrossRef] [Google Scholar]

32. Roy B.D. Milk: The new sports drink? A Review. J. Int. Soc. Sports Nutr. 2008;5:15. doi:10.1186/1550-2783-5-15. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Shirreffs S.M., Watson P., Maughan R.J. Milk as an effective post-exercise rehydration drink. Br. J. Nutr. 2007;98:173–180. doi:10.1017/S0007114507695543. [PubMed] [CrossRef] [Google Scholar]

34. Jentjens R., Jeukendrup A. Determinants of post-exercise glycogen synthesis during short-term recovery. Sports Med. 2003;33:117–144. doi:10.2165/00007256-200333020-00004. [PubMed] [CrossRef] [Google Scholar]

35. Burke L.M., Loucks A.B., Broad N. Energy and carbohydrate for training and recovery. J. Sports Sci. 2006;24:675–685. doi:10.1080/02640410500482602. [PubMed] [CrossRef] [Google Scholar]

36. Mujika I., Burke L.M. Nutrition in Team Sports. Ann. Nutr. Metab. 2010;57:26–35. doi:10.1159/000322700. [PubMed] [CrossRef] [Google Scholar]

37. Kerksick C.M., Wilborn C.D., Roberts M.D., Smith-Ryan A., Kleiner S.M., Jäger R., Collins R., Cooke M., Davis J.N., Galvan E., et al. ISSN exercise & sports nutrition review update: Research & recommendations. J. Int. Soc. Sports Nutr. 2018;15 doi:10.1186/s12970-018-0242-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Burke L.M., Hawley J.A., Wong S.H., Jeukendrup A.E. Carbohydrates for training and competition. J. Sports Sci. 2011;29:S17–S27. doi:10.1080/02640414.2011.585473. [PubMed] [CrossRef] [Google Scholar]

39. Gonzalez J., Fuchs C., Betts J., van Loon L. Glucose Plus Fructose Ingestion for Post-Exercise Recovery—Greater than the Sum of Its Parts? Nutrients. 2017;9:344. doi:10.3390/nu9040344. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. Murray B., Rosenbloom C. Fundamentals of glycogen metabolism for coaches and athletes. Nutr. Rev. 2018;76:243–259. doi:10.1093/nutrit/nuy001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Varðardóttir B., Guðmundsdóttir S.L., Ólafsdóttir A.S. Þegar orkuna skortir–áhrif hlutfallslegs orkuskorts í íþróttum (RED-s) á heilsu og árangur. Læknablaðið 2020;106:406–413. doi:10.17992/lbl.2020.09.596. [PubMed] [CrossRef] [Google Scholar]

42. Mountjoy M., Sundgot-Borgen J., Burke L., Ackerman K.E., Blauwet C., Constantini N., Lebrun C., Lundy B., Melin A., Meyer N., et al. International Olympic Committee (IOC) Consensus Statement on Relative Energy Deficiency in Sport (RED-S): 2018 Update. Int. J. Sport Nutr. Exerc. Metab. 2018;28:316–331. doi:10.1123/ijsnem.2018-0136. [PubMed] [CrossRef] [Google Scholar]

43. Toukach P.V., Egorova K.S. Carbohydrate structure database merged from bacterial, archaeal, plant and fungal parts. Nucleic Acids Res. 2016;44:D1229–D1236. doi:10.1093/nar/gkv840. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Degtyarenko K., de Matos P., Ennis M., Hastings J., Zbinden M., McNaught A., Alcantara R., Darsow M., Guedj M., Ashburner M. ChEBI: A database and ontology for chemical entities of biological interest. Nucleic Acids Res. 2007;36:D344–D350. doi:10.1093/nar/gkm791. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

45. Goulter K.C., Hashimi S.M., Birch R.G. Microbial sucrose isomerases: Producing organisms, genes and enzymes. Enzym. Microb. Technol. 2012;50:57–64. doi:10.1016/j.enzmictec.2011.09.011. [PubMed] [CrossRef] [Google Scholar]

46. Zhang G., Ao Z., Hamaker B.R. Designing Functional Foods. Woodhead Publishing; Cambridge, UK: 2009. Controlling the delivery of glucose in foods; pp. 547–571. [Google Scholar]

47. König D., Theis S., Kozianowski G., Berg A. Postprandial substrate use in overweight subjects with the metabolic syndrome after isomaltulose (Palatinose™) ingestion. Nutrition. 2012;28:651–656. doi:10.1016/j.nut.2011.09.019. [PubMed] [CrossRef] [Google Scholar]

48. Kemp S., Schweppes C., Lindley M. Modifying Flavour in Food. Woodhead Publishing; Cambridge, UK: 2007. Developments in sweeteners; pp. 185–201. [Google Scholar]

49. Bracken R.M., Page R., Gray B., Kilduff L.P., West D.J., Stephens J.W., Bain S.C. Isomaltulose Improves Glycemia and Maintains Run Performance in Type 1 Diabetes. Med. Sci. Sports Exerc. 2012;44:800–808. doi:10.1249/MSS.0b013e31823f6557. [PubMed] [CrossRef] [Google Scholar]

50. König D., Zdzieblik D., Holz A., Theis S., Gollhofer A. Substrate Utilization and Cycling Performance Following Palatinose™ Ingestion: A Randomized, Double-Blind, Controlled Trial. Nutrients. 2016;8:390. doi:10.3390/nu8070390. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. Hattori S., Noguchi A., Sasagawa K., Ogata H., Kobayashi M., Omi N. Influence of Isomaltulose Ingestion on Fat Oxidation During Inclemental Exercise in Endurance Athletes. Am. J. Sports Sci. 2019;7 doi:10.11648/j.ajss.20190704.20. [CrossRef] [Google Scholar]

52. Stevenson E.J., Watson A., Theis S., Holz A., Harper L.D., Russell M. A comparison of isomaltulose versus maltodextrin ingestion during soccer-specific exercise. Eur. J. Appl. Physiol. 2017;117:2321–2333. doi:10.1007/s00421-017-3719-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Kraemer W.J., Hooper D.R., Szivak T.K., Kupchak B.R., Dunn-Lewis C., Comstock B.A., Flanagan S.D., Looney D.P., Sterczala A.J., DuPont W.H., et al. The Addition of Beta-hydroxy-beta-methylbutyrate and Isomaltulose to Whey Protein Improves Recovery from Highly Demanding Resistance Exercise. J. Am. Coll. Nutr. 2015;34:91–99. doi:10.1080/07315724.2014.938790. [PubMed] [CrossRef] [Google Scholar]

54. Amano T., Sugiyama Y., Okumura J., Fujii N., Kenny G.P., Nishiyasu T., Inoue Y., Kondo N., Sasagawa K., Enoki Y., et al. Effects of isomaltulose ingestion on postexercise hydration state and heat loss responses in young men. Exp. Physiol. 2019;104:1494–1504. doi:10.1113/EP087843. [PubMed] [CrossRef] [Google Scholar]

55. Maresch C.C., Petry S.F., Theis S., Bosy-Westphal A., Linn T. Low Glycemic Index Prototype Isomaltulose—Update of Clinical Trials. Nutrients. 2017;9:381. doi:10.3390/nu9040381. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Ferrugem L., Martini G., de Souza C. Influence of the Glycemic Index of Pre-exercise Meals in Sports Performance: A Systematic Review. Int. J. Med. Rev. 2018;5:151–158. doi:10.29252/IJMR-050405. [CrossRef] [Google Scholar]

57. Surana R., Pyne A., Suryanarayanan R. Effect of Preparation Method on Physical Properties of Amorphous Trehalose. Pharm. Res. 2004;21:1167–1176. doi:10.1023/B:PHAM.0000033003.17251.c3. [PubMed] [CrossRef] [Google Scholar]

58. Côté G.L. Novel Enzyme Technology for Food Applications. Woodhead Publishing; Cambridge, UK: 2007. Flavorings and other value-added products from sucrose * *Mention of trade names or commercial products is solely for the purpose of providing specific information and does not imply recommendation or endorsem*nt by the US Department of Agriculture; pp. 243–269. [Google Scholar]

59. Arai S., Morinaga Y., Yoshikawa T., Ichiishi E., Kiso Y., Yamazaki M., Morotomi M., Shimizu M., Kuwata T., Kaminogawa S. Recent Trends in Functional Food Science and the Industry in Japan. Biosci. Biotechnol. Biochem. 2014;66:2017–2029. doi:10.1271/bbb.66.2017. [PubMed] [CrossRef] [Google Scholar]

60. Lina B.A.R., Jonker D., Kozianowski G. Isomaltulose (Palatinose®): A review of biological and toxicological studies. Food Chem. Toxicol. 2002;40:1375–1381. doi:10.1016/S0278-6915(02)00105-9. [PubMed] [CrossRef] [Google Scholar]

61. Ngo C. Master’s Thesis. Luleå University of Technology; Luleå, Sweden: 2018. In Vitro Starch Digestion for Analysis of Healthy Carbohydrates. [Google Scholar]

62. Zia ud D., Xiong H., Fei P. Physical and chemical modification of starches: A review. Crit. Rev. Food Sci. Nutr. 2017;57:2691–2705. doi:10.1080/10408398.2015.1087379. [PubMed] [CrossRef] [Google Scholar]

63. Pfeiffer A., Schmidt T., Kaess H. The role of osmolality in the absorption of a nutrient solution. Aliment. Pharmacol. Ther. 1998;12:281–286. doi:10.1046/j.1365-2036.1998.00301.x. [PubMed] [CrossRef] [Google Scholar]

64. Piehl Aulin K., Söderlund K., Hultman E. Muscle glycogen resynthesis rate in humans after supplementation of drinks containing carbohydrates with low and high molecular masses. Eur. J. Appl. Physiol. 2000;81:346–351. doi:10.1007/s004210050053. [PubMed] [CrossRef] [Google Scholar]

65. Stephens F.B., Roig M., Armstrong G., Greenhaff P.L. Post-exercise ingestion of a unique, high molecular weight glucose polymer solution improves performance during a subsequent bout of cycling exercise. J. Sports Sci. 2008;26:149–154. doi:10.1080/02640410701361548. [PubMed] [CrossRef] [Google Scholar]

66. Oliver J.M., Almada A.L., Van Eck L.E., Shah M., Mitchell J.B., Jones M.T., Jagim A.R., Rowlands D.S. Ingestion of High Molecular Weight Carbohydrate Enhances Subsequent Repeated Maximal Power: A Randomized Controlled Trial. PLoS ONE. 2016;11 doi:10.1371/journal.pone.0163009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

67. McGlory C., Morton J.P. The Effects of Postexercise Consumption of High-Molecular-Weight versus Low-Molecular-Weight Carbohydrate Solutions on Subsequent High-Intensity Interval-Running Capacity. Int. J. Sport Nutr. Exerc. Metab. 2010;20:361–369. doi:10.1123/ijsnem.20.5.361. [PubMed] [CrossRef] [Google Scholar]

68. Anzalone A.J., Almada A.L., Van Eck L.E., Jones M.T., Jagim A.R., Mitchell J.B., Shah M., Oliver J.M. Effect of post-exercise ingestion of different molecular weight carbohydrate solutions. Part II: The incretin response. J. Int. Soc. Sports Nutr. 2015;12 doi:10.1186/1550-2783-12-S1-P31. [CrossRef] [Google Scholar]

69. Mock M.G., Hirsch K.R., Blue M.N.M., Trexler E.T., Roelofs E.J., Smith-Ryan A.E. Post-Exercise Ingestion of Low or High Molecular Weight Glucose Polymer Solution Does Not Improve Cycle Performance in Female Athletes. J. Strength Cond. Res. 2018 doi:10.1519/JSC.0000000000002560. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Leemhuis H., Kelly R.M., Dijkhuizen L. Engineering of cyclodextrin glucanotransferases and the impact for biotechnological applications. Appl. Microbiol. Biotechnol. 2009;85:823–835. doi:10.1007/s00253-009-2221-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

71. Stick R.V., Williams S.J. Carbohydrates: The Essential Molecules of Life. Elsevier Science; Amsterdam, The Netherlands: 2009. Disaccharides, Oligosaccharides and Polysaccharides; pp. 321–341. [CrossRef] [Google Scholar]

72. French D., Pulley A.O., Effenberger J.A., Rougvie M.A., Abdullah M. Studies on the Schardinger dextrins. XII. The molecular size and structure of the delta-, epsilon-, zeta-, and eta-dextrins. Arch. Biochem. Biophys. 1965;111:153–160. doi:10.1016/0003-9861(65)90334-6. [PubMed] [CrossRef] [Google Scholar]

73. Avakyan V.G., Nazarov V.B., Alfimov M.V., Bagatur"yants A.A., Voronezheva N.I. The role of intra- and intermolecular hydrogen bonds in the formation of β-cyclodextrin head-to-head and head-to-tail dimers. The results of ab initio and semiempirical quantum-chemical calculations. Russ. Chem. Bull. 2001;50:206–216. doi:10.1023/A:1009557729668. [CrossRef] [Google Scholar]

74. Narayanaswamy R., Kanagesan S., Pandurangan A., Padmanabhan P. Nanobiomaterials in Medical Imaging. William Andrew; Norwich, NY, USA: 2016. Basics to different imaging techniques, different nanobiomaterials for image enhancement; pp. 101–129. [Google Scholar]

75. Semalty A. Cyclodextrin and phospholipid complexation in solubility and dissolution enhancement: A critical and meta-analysis. Expert Opin. Drug Deliv. 2014;11:1255–1272. doi:10.1517/17425247.2014.916271. [PubMed] [CrossRef] [Google Scholar]

76. Dura A., Yokoyama W., Rosell C.M. Glycemic Response to Corn Starch Modified with Cyclodextrin Glycosyltransferase and its Relationship to Physical Properties. Plant Foods Hum. Nutr. 2016;71:252–258. doi:10.1007/s11130-016-0553-6. [PubMed] [CrossRef] [Google Scholar]

77. Choi S.S.H., Danielewska-Nikiel B., Ohdan K., Kojima I., Takata H., Kuriki T. Safety evaluation of highly-branched cyclic dextrin and a 1,4-α-glucan branching enzyme from Bacillus stearothermophilus. Regul. Toxicol. Pharmacol. 2009;55:281–290. doi:10.1016/j.yrtph.2009.07.011. [PubMed] [CrossRef] [Google Scholar]

78. Takii H., Takii Y., Kometani T., Nishimura T., Nakae T., Kuriki T., Fushiki T. Fluids Containing a Highly Branched Cyclic Dextrin Influence the Gastric Emptying Rate. Int. J. Sports Med. 2005;26:314–319. doi:10.1055/s-2004-820999. [PubMed] [CrossRef] [Google Scholar]

79. Fenyvesi É., Vikmon M., Szente L. Cyclodextrins in Food Technology and Human Nutrition: Benefits and Limitations. Crit. Rev. Food Sci. Nutr. 2015;56:1981–2004. doi:10.1080/10408398.2013.809513. [PubMed] [CrossRef] [Google Scholar]

80. Takata H., Kojima I., Taji N., Suzuki Y., Yamamoto M. Industrial production of branching enzyme, and its application to production of highly branched cyclic dextrin (Cluster DextrinTM) Seibutsu Kogaku Kaishi. 2006;84:61–66. [Google Scholar]

81. Kometani T. Production of novel bioactive compounds by enzymes, and their application to food. Pure Appl. Chem. 2010;82:269–287. doi:10.1351/PAC-CON-09-02-05. [CrossRef] [Google Scholar]

82. Takii H., Kometani T., Nishimura T., Kuriki T., Fushiki T. A Sports Drink Based on Highly Branched Cyclic Dextrin Generates Few Gastrointestinal Disorders in Untrained Men during Bicycle Exercise. Food Sci. Technol. Res. 2004;10:428–431. doi:10.3136/fstr.10.428. [CrossRef] [Google Scholar]

83. Shiraki T., Kometani T., Yosh*tani K., Takata H., Nomura T. Evaluation of Exercise Performance with the Intake of Highly Branched Cyclic Dextrin in Athletes. Food Sci. Technol. Res. 2015;21:499–502. doi:10.3136/fstr.21.499. [CrossRef] [Google Scholar]

84. Furuyashiki T., Tanimoto H., Yokoyama Y., Kitaura Y., Kuriki T., Shimomura Y. Effects of ingesting highly branched cyclic dextrin during endurance exercise on rating of perceived exertion and blood components associated with energy metabolism. Biosci. Biotechnol. Biochem. 2014;78:2117–2119. doi:10.1080/09168451.2014.943654. [PubMed] [CrossRef] [Google Scholar]

85. Suzuki K., Shiraishi K., Yosh*tani K., Sugama K., Kometani T. Effect of a sports drink based on highly-branched cyclic dextrin on cytokine responses to exhaustive endurance exercise. J. Sports Med. Phys. Fit. 2014;54:622–630. [PubMed] [Google Scholar]

86. Bruns C.J. Exploring and Exploiting the Symmetry-Breaking Effect of Cyclodextrins in Mechanomolecules. Symmetry. 2019;11:1249. doi:10.3390/sym11101249. [CrossRef] [Google Scholar]

87. Rousseau J., Menuel S., Rousseau C., Hapiot F., Monflier E. Organic Nanoreactors. Academic Press; London, UK: 2016. Cyclodextrins as Porous Material for Catalysis; pp. 15–42. [Google Scholar]

88. Baykal A., Bozkurt A., Jeremy R., Asiri S.M.M., Lima-Tenório M.K., Kaewsaneha C., Elaissari A. Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications. Woodhead Publishing; Cambridge, UK: 2019. Multistimuli-responsive magnetic assemblies; pp. 155–193. [Google Scholar]

89. Kadota K., Senda A., Ito T., Tozuka Y. Feasibility of highly branched cyclic dextrin as an excipient matrix in dry powder inhalers. Eur. J. Pharm. Sci. 2015;79:79–86. doi:10.1016/j.ejps.2015.09.006. [PubMed] [CrossRef] [Google Scholar]

90. Fujii K., Takata H., Yanase M., Terada Y., Ohdan K., Takaha T., Okada S., Kuriki T. Bioengineering and Application of Novel Glucose Polymers. Biocatal. Biotransform. 2010;21:167–172. doi:10.1080/10242420310001614379. [CrossRef] [Google Scholar]

91. David L.A., Maurice C.F., Carmody R.N., Gootenberg D.B., Button J.E., Wolfe B.E., Ling A.V., Devlin A.S., Varma Y., Fischbach M.A., et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2013;505:559–563. doi:10.1038/nature12820. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

92. Huang W.-C., Pan C.-H., Wei C.-C., Huang H.-Y. Lactobacillus plantarum PS128 Improves Physiological Adaptation and Performance in Triathletes through Gut Microbiota Modulation. Nutrients. 2020;12:2315. doi:10.3390/nu12082315. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

93. Jäger R., Mohr A.E., Carpenter K.C., Kerksick C.M., Purpura M., Moussa A., Townsend J.R., Lamprecht M., West N.P., Black K., et al. International Society of Sports Nutrition Position Stand: Probiotics. J. Int. Soc. Sports Nutr. 2019;16 doi:10.1186/s12970-019-0329-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

94. Mohr A.E., Jäger R., Carpenter K.C., Kerksick C.M., Purpura M., Townsend J.R., West N.P., Black K., Gleeson M., Pyne D.B., et al. The athletic gut microbiota. J. Int. Soc. Sports Nutr. 2020;17 doi:10.1186/s12970-020-00353-w. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

95. Jager R., Kerksick C.M., Campbell B.I., Cribb P.J., Wells S.D., Skwiat T.M., Purpura M., Ziegenfuss T.N., Ferrando A.A., Arent S.M., et al. International Society of Sports Nutrition Position Stand: Protein and exercise. J. Int. Soc. Sports Nutr. 2017;14:20. doi:10.1186/s12970-017-0177-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

96. Kerksick C.M., Arent S., Schoenfeld B.J., Stout J.R., Campbell B., Wilborn C.D., Taylor L., Kalman D., Smith-Ryan A.E., Kreider R.B., et al. International society of sports nutrition position stand: Nutrient timing. J. Int. Soc. Sports Nutr. 2017;14 doi:10.1186/s12970-017-0189-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

97. Saunders M.J., Luden N.D., DeWitt C.R., Gross M.C., Dillon Rios A. Protein Supplementation During or Following a Marathon Run Influences Post-Exercise Recovery. Nutrients. 2018;10:333. doi:10.3390/nu10030333. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

98. Churchward-Venne T.A., Pinckaers P.J.M., Smeets J.S.J., Betz M.W., Senden J.M., Goessens J.P.B., Gijsen A.P., Rollo I., Verdijk L.B., van Loon L.J.C. Dose-response effects of dietary protein on muscle protein synthesis during recovery from endurance exercise in young men: A double-blind randomized trial. Am. J. Clin. Nutr. 2020;112:303–317. doi:10.1093/ajcn/nqaa073. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

99. Kreider R.B., Kalman D.S., Antonio J., Ziegenfuss T.N., Wildman R., Collins R., Candow D.G., Kleiner S.M., Almada A.L., Lopez H.L. International Society of Sports Nutrition position stand: Safety and efficacy of creatine supplementation in exercise, sport, and medicine. J. Int. Soc. Sports Nutr. 2017;14 doi:10.1186/s12970-017-0173-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

100. Bonilla D.A., Moreno Y. Molecular and metabolic insights of creatine supplementation on resistance training. Rev. Colomb. Química. 2015;44:11–18. doi:10.15446/rev.colomb.quim.v44n1.53978. [CrossRef] [Google Scholar]

101. Roberts P.A., Fox J., Peirce N., Jones S.W., Casey A., Greenhaff P.L. Creatine ingestion augments dietary carbohydrate mediated muscle glycogen supercompensation during the initial 24 h of recovery following prolonged exhaustive exercise in humans. Amino Acids. 2016;48:1831–1842. doi:10.1007/s00726-016-2252-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

102. Myburgh K.H. Polyphenol supplementation: Benefits for exercise performance or oxidative stress? Sports Med. 2014;44:S57–S70. doi:10.1007/s40279-014-0151-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

103. Levers K., Dalton R., Galvan E., O'Connor A., Goodenough C., Simbo S., Mertens-Talcott S.U., Rasmussen C., Greenwood M., Riechman S., et al. Effects of powdered Montmorency tart cherry supplementation on acute endurance exercise performance in aerobically trained individuals. J. Int. Soc. Sports Nutr. 2015;13:22. doi:10.1186/s12970-016-0133-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

104. Brown M.A., Stevenson E.J., Howatson G. Montmorency tart cherry (Prunus cerasus L.) supplementation accelerates recovery from exercise-induced muscle damage in females. Eur. J. Sport Sci. 2018;19:95–102. doi:10.1080/17461391.2018.1502360. [PubMed] [CrossRef] [Google Scholar]

105. Somerville V., Bringans C., Braakhuis A. Polyphenols and Performance: A Systematic Review and Meta-Analysis. Sports Med. 2017;47:1589–1599. doi:10.1007/s40279-017-0675-5. [PubMed] [CrossRef] [Google Scholar]

106. Bowtell J., Kelly V. Fruit-Derived Polyphenol Supplementation for Athlete Recovery and Performance. Sports Med. 2019;49:3–23. doi:10.1007/s40279-018-0998-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

107. Doma K., Gahreman D., Connor J. Fruit supplementation reduces indices of exercise-induced muscle damage: A systematic review and meta-analysis. Eur. J. Sport Sci. 2020:1–18. doi:10.1080/17461391.2020.1775895. [PubMed] [CrossRef] [Google Scholar]

108. Delecroix B., Abaidia A.E., Leduc C., Dawson B., Dupont G. Curcumin and Piperine Supplementation and Recovery Following Exercise Induced Muscle Damage: A Randomized Controlled Trial. J. Sports Sci. Med. 2017;16:147–153. [PMC free article] [PubMed] [Google Scholar]

109. Bonilla D.A., Paipilla A.F., Marin E., Vargas-Molina S., Petro J.L., Perez-Idarraga A. Dietary Nitrate from Beetroot Juice for Hypertension: A Systematic Review. Biomolecules. 2018;8:134. doi:10.3390/biom8040134. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

110. Siervo M., Lara J., Ogbonmwan I., Mathers J.C. Inorganic nitrate and beetroot juice supplementation reduces blood pressure in adults: A systematic review and meta-analysis. J. Nutr. 2013;143:818–826. doi:10.3945/jn.112.170233. [PubMed] [CrossRef] [Google Scholar]

111. Cuenca E., Jodra P., Perez-Lopez A., Gonzalez-Rodriguez L.G., Fernandes da Silva S., Veiga-Herreros P., Dominguez R. Effects of Beetroot Juice Supplementation on Performance and Fatigue in a 30-s All-Out Sprint Exercise: A Randomized, Double-Blind Cross-Over Study. Nutrients. 2018;10:1222. doi:10.3390/nu10091222. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

112. Mosher S.L., Sparks S.A., Williams E.L., Bentley D.J., Mc Naughton L.R. Ingestion of a Nitric Oxide Enhancing Supplement Improves Resistance Exercise Performance. J. Strength Cond. Res. 2016;30:3520–3524. doi:10.1519/JSC.0000000000001437. [PubMed] [CrossRef] [Google Scholar]

113. Clifford T., Berntzen B., Davison G.W., West D.J., Howatson G., Stevenson E.J. Effects of Beetroot Juice on Recovery of Muscle Function and Performance between Bouts of Repeated Sprint Exercise. Nutrients. 2016;8:506. doi:10.3390/nu8080506. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

114. Clifford T., Bell O., West D.J., Howatson G., Stevenson E.J. The effects of beetroot juice supplementation on indices of muscle damage following eccentric exercise. Eur. J. Appl. Physiol. 2015;116:353–362. doi:10.1007/s00421-015-3290-x. [PubMed] [CrossRef] [Google Scholar]

115. Montenegro C.F., Kwong D.A., Minow Z.A., Davis B.A., Lozada C.F., Casazza G.A. Betalain-rich concentrate supplementation improves exercise performance and recovery in competitive triathletes. Appl. Physiol. Nutr. Metab. 2017;42:166–172. doi:10.1139/apnm-2016-0452. [PubMed] [CrossRef] [Google Scholar]

116. Wilson P.B. A Randomized Double-Blind Trial of Ginger Root for Reducing Muscle Soreness and Improving Physical Performance Recovery among Experienced Recreational Distance Runners. J. Diet. Suppl. 2018;17:121–132. doi:10.1080/19390211.2018.1492484. [PubMed] [CrossRef] [Google Scholar]

117. Dominguez-Balmaseda D., Diez-Vega I., Larrosa M., San Juan A.F., Issaly N., Moreno-Pérez D., Burgos S., Sillero-Quintana M., Gonzalez C., Bas A., et al. Effect of a Blend of Zingiber officinale Roscoe and Bixa orellana L. Herbal Supplement on the Recovery of Delayed-Onset Muscle Soreness Induced by Unaccustomed Eccentric Resistance Training: A Randomized, Triple-Blind, Placebo-Controlled Trial. Front. Physiol. 2020;11 doi:10.3389/fphys.2020.00826. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

118. Pu W.-l., Zhang M.-y., Bai R.-y., Sun L.-k., Li W.-h., Yu Y.-l., Zhang Y., Song L., Wang Z.-x., Peng Y.-f., et al. Anti-inflammatory effects of Rhodiola rosea L.: A review. Biomed. Pharmacother. 2020;121 doi:10.1016/j.biopha.2019.109552. [PubMed] [CrossRef] [Google Scholar]

119. Tan L., Song X., Ren Y., Wang M., Guo C., Guo D., Gu Y., Li Y., Cao Z., Deng Y. Anti-inflammatory effects of cordycepin: A review. Phytother. Res. 2020 doi:10.1002/ptr.6890. [PubMed] [CrossRef] [Google Scholar]

120. Tsai P.-H., Lin F.-C., Huang C.-C., Hou C.-W., Cheng I.-S. Effects of Rhodiola rosea-Cordyceps sinensis Supplementation on Glycogen Synthesis in Exercised Human Skeletal Muscle. Sports Exerc. Res. 2019;21:375–386. [Google Scholar]

121. Choudhary B., Shetty A., Langade D.G. Efficacy of Ashwagandha (Withania somnifera [L.] Dunal) in improving cardiorespiratory endurance in healthy athletic adults. Ayu (Int. Q. J. Res. Ayurveda) 2015;36:63. doi:10.4103/0974-8520.169002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

122. Wankhede S., Langade D., Joshi K., Sinha S.R., Bhattacharyya S. Examining the effect of Withania somnifera supplementation on muscle strength and recovery: A randomized controlled trial. J. Int. Soc. Sports Nutr. 2015;12 doi:10.1186/s12970-015-0104-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

123. Ziegenfuss T., Kedia A., Sandrock J., Raub B., Kerksick C., Lopez H. Effects of an Aqueous Extract of Withania somnifera on Strength Training Adaptations and Recovery: The STAR Trial. Nutrients. 2018;10:1807. doi:10.3390/nu10111807. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

124. Langade D., Kanchi S., Salve J., Debnath K., Ambegaokar D. Efficacy and Safety of Ashwagandha (Withania somnifera) Root Extract in Insomnia and Anxiety: A Double-blind, Randomized, Placebo-controlled Study. Cureus. 2019 doi:10.7759/cureus.5797. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

125. Salve J., Pate S., Debnath K., Langade D. Adaptogenic and Anxiolytic Effects of Ashwagandha Root Extract in Healthy Adults: A Double-blind, Randomized, Placebo-controlled Clinical Study. Cureus. 2019 doi:10.7759/cureus.6466. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

126. Singh N., Bhalla M., De Jager P., Gilca M. An Overview on Ashwagandha: A Rasayana (Rejuvenator) of Ayurveda. Afr. J. Tradit. Complementary Altern. Med. 2011;8 doi:10.4314/ajtcam.v8i5S.9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

127. Kraemer W.J., Ratamess N.A., Volek J.S., Häkkinen K., Rubin M.R., French D.N., Gómez A.L., McGuigan M.R., Scheett T.P., Newton R.U., et al. The effects of amino acid supplementation on hormonal responses to resistance training overreaching. Metab. Clin. Exp. 2006;55:282–291. doi:10.1016/j.metabol.2005.08.023. [PubMed] [CrossRef] [Google Scholar]

128. Fouré A., Bendahan D. Is Branched-Chain Amino Acids Supplementation an Efficient Nutritional Strategy to Alleviate Skeletal Muscle Damage? A Systematic Review. Nutrients. 2017;9:1047. doi:10.3390/nu9101047. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

129. Rahimi M.H., Shab-Bidar S., Mollahosseini M., Djafarian K. Branched-chain amino acid supplementation and exercise-induced muscle damage in exercise recovery: A meta-analysis of randomized clinical trials. Nutrition. 2017;42:30–36. doi:10.1016/j.nut.2017.05.005. [PubMed] [CrossRef] [Google Scholar]

130. Hormoznejad R., Zare Javid A., Mansoori A. Effect of BCAA supplementation on central fatigue, energy metabolism substrate and muscle damage to the exercise: A systematic review with meta-analysis. Sport Sci. Health. 2019;15:265–279. doi:10.1007/s11332-019-00542-4. [CrossRef] [Google Scholar]

131. Fedewa M.V., Spencer S.O., Williams T.D., Becker Z.E., Fuqua C.A. Effect of branched-Chain Amino Acid Supplementation on Muscle Soreness following Exercise: A Meta-Analysis. Int. J. Vitam. Nutr. Res. 2019;89:348–356. doi:10.1024/0300-9831/a000543. [PubMed] [CrossRef] [Google Scholar]

132. VanDusseldorp T.A., Escobar K.A., Johnson K.E., Stratton M.T., Moriarty T., Cole N., McCormick J.J., Kerksick C.M., Vaughan R.A., Dokladny K., et al. Effect of Branched-Chain Amino Acid Supplementation on Recovery Following Acute Eccentric Exercise. Nutrients. 2018;10:1389. doi:10.3390/nu10101389. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

133. Correia A.L.M., de Lima F.D., Bottaro M., Vieira A., da Fonseca A.C., Lima R.M. Pre-exercise β-hydroxy-β-methylbutyrate free-acid supplementation improves work capacity recovery: A randomized, double-blinded, placebo-controlled study. Appl. Physiol. Nutr. Metab. 2018;43:691–696. doi:10.1139/apnm-2017-0867. [PubMed] [CrossRef] [Google Scholar]

134. Silva V.R., Belozo F.L., Micheletti T.O., Conrado M., Stout J.R., Pimentel G.D., Gonzalez A.M. β-hydroxy-β-methylbutyrate free acid supplementation may improve recovery and muscle adaptations after resistance training: A systematic review. Nutr. Res. 2017;45:1–9. doi:10.1016/j.nutres.2017.07.008. [PubMed] [CrossRef] [Google Scholar]

135. Rahimi M.H., Mohammadi H., Eshaghi H., Askari G., Miraghajani M. The Effects of Beta-Hydroxy-Beta-Methylbutyrate Supplementation on Recovery Following Exercise-Induced Muscle Damage: A Systematic Review and Meta-Analysis. J. Am. Coll. Nutr. 2018;37:640–649. doi:10.1080/07315724.2018.1451789. [PubMed] [CrossRef] [Google Scholar]

136. Rawson E.S., Miles M.P., Larson-Meyer D.E. Dietary Supplements for Health, Adaptation, and Recovery in Athletes. Int. J. Sport Nutr. Exerc. Metab. 2018;28:188–199. doi:10.1123/ijsnem.2017-0340. [PubMed] [CrossRef] [Google Scholar]

137. Ammar A., Bailey S.J., Chtourou H., Trabelsi K., Turki M., Hökelmann A., Souissi N. Effects of pomegranate supplementation on exercise performance and post-exercise recovery in healthy adults: A systematic review. Br. J. Nutr. 2018;120:1201–1216. doi:10.1017/S0007114518002696. [PubMed] [CrossRef] [Google Scholar]

138. Alcantara J.M.A., Sanchez-Delgado G., Martinez-Tellez B., Labayen I., Ruiz J.R. Impact of cow’s milk intake on exercise performance and recovery of muscle function: A systematic review. J. Int. Soc. Sports Nutr. 2019;16 doi:10.1186/s12970-019-0288-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

139. Amiri M., Ghiasvand R., Kaviani M., Forbes S.C., Salehi-Abargouei A. Chocolate milk for recovery from exercise: A systematic review and meta-analysis of controlled clinical trials. Eur. J. Clin. Nutr. 2018;73:835–849. doi:10.1038/s41430-018-0187-x. [PubMed] [CrossRef] [Google Scholar]

140. Vitale K.C., Owens R., Hopkins S.R., Malhotra A. Sleep Hygiene for Optimizing Recovery in Athletes: Review and Recommendations. Int. J. Sports Med. 2019;40:535–543. doi:10.1055/a-0905-3103. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

141. Fullagar H.H.K., Duffield R., Skorski S., Coutts A.J., Julian R., Meyer T. Sleep and Recovery in Team Sport: Current Sleep-Related Issues Facing Professional Team-Sport Athletes. Int. J. Sports Physiol. Perform. 2015;10:950–957. doi:10.1123/ijspp.2014-0565. [PubMed] [CrossRef] [Google Scholar]

142. von Rosen P., Frohm A., Kottorp A., Fridén C., Heijne A. Too little sleep and an unhealthy diet could increase the risk of sustaining a new injury in adolescent elite athletes. Scand. J. Med. Sci. Sports. 2017;27:1364–1371. doi:10.1111/sms.12735. [PubMed] [CrossRef] [Google Scholar]

143. Silva M.R.G., Paiva T. Poor precompetitive sleep habits, nutrients’ deficiencies, inappropriate body composition and athletic performance in elite gymnasts. Eur. J. Sport Sci. 2015;16:726–735. doi:10.1080/17461391.2015.1103316. [PubMed] [CrossRef] [Google Scholar]

144. Gupta L., Morgan K., Gilchrist S. Does Elite Sport Degrade Sleep Quality? A Systematic Review. Sports Med. 2016;47:1317–1333. doi:10.1007/s40279-016-0650-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

145. Bonnar D., Bartel K., Kakoschke N., Lang C. Sleep Interventions Designed to Improve Athletic Performance and Recovery: A Systematic Review of Current Approaches. Sports Med. 2018;48:683–703. doi:10.1007/s40279-017-0832-x. [PubMed] [CrossRef] [Google Scholar]

146. Peuhkuri K., Sihvola N., Korpela R. Diet promotes sleep duration and quality. Nutr. Res. 2012;32:309–319. doi:10.1016/j.nutres.2012.03.009. [PubMed] [CrossRef] [Google Scholar]

147. Doherty R., Madigan S., Warrington G., Ellis J. Sleep and Nutrition Interactions: Implications for Athletes. Nutrients. 2019;11:822. doi:10.3390/nu11040822. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

148. Kim J. Pre-sleep casein protein ingestion: New paradigm in post-exercise recovery nutrition. Phys. Act. Nutr. 2020;24:6–10. doi:10.20463/pan.2020.0009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

149. Res P.T., Groen B., Pennings B., Beelen M., Wallis G.A., Gijsen A.P., Senden J.M.G., Van Loon L.J.C. Protein Ingestion before Sleep Improves Postexercise Overnight Recovery. Med. Sci. Sports Exerc. 2012;44:1560–1569. doi:10.1249/MSS.0b013e31824cc363. [PubMed] [CrossRef] [Google Scholar]

150. Snijders T., Res P.T., Smeets J.S.J., van Vliet S., van Kranenburg J., Maase K., Kies A.K., Verdijk L.B., van Loon L.J.C. Protein Ingestion before Sleep Increases Muscle Mass and Strength Gains during Prolonged Resistance-Type Exercise Training in Healthy Young Men. J. Nutr. 2015;145:1178–1184. doi:10.3945/jn.114.208371. [PubMed] [CrossRef] [Google Scholar]

151. Wall B.T., Burd N.A., Franssen R., Gorissen S.H.M., Snijders T., Senden J.M., Gijsen A.P., van Loon L.J.C. Presleep protein ingestion does not compromise the muscle protein synthetic response to protein ingested the following morning. Am. J. Physiol.-Endocrinol. Metab. 2016;311:E964–E973. doi:10.1152/ajpendo.00325.2016. [PubMed] [CrossRef] [Google Scholar]

152. Trommelen J., Kouw I.W.K., Holwerda A.M., Snijders T., Halson S.L., Rollo I., Verdijk L.B., van Loon L.J.C. Presleep dietary protein-derived amino acids are incorporated in myofibrillar protein during postexercise overnight recovery. Am. J. Physiol.-Endocrinol. Metab. 2018;314:E457–E467. doi:10.1152/ajpendo.00273.2016. [PubMed] [CrossRef] [Google Scholar]

153. Snijders T., Trommelen J., Kouw I.W.K., Holwerda A.M., Verdijk L.B., van Loon L.J.C. The Impact of Pre-sleep Protein Ingestion on the Skeletal Muscle Adaptive Response to Exercise in Humans: An Update. Front. Nutr. 2019;6 doi:10.3389/fnut.2019.00017. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

154. Larsen M.S., Clausen D., Jørgensen A.A., Mikkelsen U.R., Hansen M. Presleep Protein Supplementation Does Not Improve Recovery during Consecutive Days of Intense Endurance Training: A Randomized Controlled Trial. Int. J. Sport Nutr. Exerc. Metab. 2019:1–9. doi:10.1123/ijsnem.2018-0286. [PubMed] [CrossRef] [Google Scholar]

155. Reis C.E.G., Loureiro L.M.R., Roschel H., da Costa T.H.M. Effects of pre-sleep protein consumption on muscle-related outcomes—A systematic review. J. Sci. Med. Sport. 2020 doi:10.1016/j.jsams.2020.07.016. [PubMed] [CrossRef] [Google Scholar]

156. Deshpande A., Irani N., Balkrishnan R., Benny I.R. A randomized, double blind, placebo controlled study to evaluate the effects of ashwagandha (Withania somnifera) extract on sleep quality in healthy adults. Sleep Med. 2020;72:28–36. doi:10.1016/j.sleep.2020.03.012. [PubMed] [CrossRef] [Google Scholar]

157. Flynn S., Rosales A., Hailes W., Ruby B. Males and females exhibit similar muscle glycogen recovery with varied recovery food sources. Eur. J. Appl. Physiol. 2020;120:1131–1142. doi:10.1007/s00421-020-04352-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

The 4R’s Framework of Nutritional Strategies for Post-Exercise Recovery: A Review with Emphasis on New Generation of Carbohydrates (2024)

FAQs

The 4R’s Framework of Nutritional Strategies for Post-Exercise Recovery: A Review with Emphasis on New Generation of Carbohydrates? ›

The 4Rs framework for nutritional strategies for post-exercise is key to performance in sport: rehydration; refuel-the consumption of carbohydrates; repair-post-exercise ingestion of high-quality protein; and Rest-pre-sleep nutrition [19] .

What are the 4R's framework of nutritional strategies for post-exercise recovery? ›

The 4R's framework of nutritional strategies to optimize post-exercise recovery in athletes.
  • 3.1. Rehydrate. One of the first goals during recovery is to replace any fluid and electrolyte deficits. ...
  • 3.2. Refuel. ...
  • 3.3. Repair. ...
  • 3.4. Rest.
Dec 25, 2020

What do the four R's of recovery refer to? ›

Here at Kinetica Sports, we believe in four key focus points when it comes to recovery: refuel, rebuild, rehydrate and rest. Check out this guide on how Kinetica could play a role in your recovery strategy.

What is the role of carbohydrates in post-exercise recovery? ›

Consuming carbohydrate immediately after exercise increases the rate of muscle glycogen resynthesis and also results in greater endurance capacity during subsequent exercise.

What are the 3 R's of recovery nutrition? ›

If that sounds like a mouthful, consider learning the three “R's” of recovery: Refuel, Rebuild & Rehydrate. These 3 principles are the cornerstones of post-workout & recovery nutrition. They are also essential in maximizing the training effect.

Top Articles
Latest Posts
Article information

Author: Edmund Hettinger DC

Last Updated:

Views: 6200

Rating: 4.8 / 5 (78 voted)

Reviews: 93% of readers found this page helpful

Author information

Name: Edmund Hettinger DC

Birthday: 1994-08-17

Address: 2033 Gerhold Pine, Port Jocelyn, VA 12101-5654

Phone: +8524399971620

Job: Central Manufacturing Supervisor

Hobby: Jogging, Metalworking, Tai chi, Shopping, Puzzles, Rock climbing, Crocheting

Introduction: My name is Edmund Hettinger DC, I am a adventurous, colorful, gifted, determined, precious, open, colorful person who loves writing and wants to share my knowledge and understanding with you.